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The generation of a standing wave of vortices in thin channels has been experimentally 
observed and discussed in the literature for the last several years. The specific cause of 
the wave and its response to various conditions remains largely unexplored. In this 
paper we model pulsatile flow through thin channels with inserted deflectors to 
generate the vortex wave, and we examine various measures to quantify its effects. We 
focus on the numerical solution of the transient vortex wave phenomenon and its 
response to a superimposed bulk flow, variations of pulsation, deflector spacing and 
shape as well as transverse suction. The quantifying measures are mapped over a 
Reynolds' number-Strouhal number domain. 

1. Introduction 
In this paper we consider calculations of some characteristics of a vortex wave and 

illustrate the potential use of a vortex wave mechanism in mixing or filtration 
processes. Stephanoff et al. (1983) first observed a vortex wave during steady flow past 
a moving indentation and Sobey (1985) showed that a vortex wave would also form 
downstream of a channel expansion during oscillatory flow. Separation occurs in the 
lee of the channel expansion, forming a primary vortex on the wall of the expanded side 
of the channel. At the end of the acceleration phase, the centre of the primary vortex 
is observed to be further downstream than in the case of steady flow, and the 
unsteadiness also produces a substantial secondary vortex further downstream on the 
opposite wall. During the deceleration phase of the oscillatory flow (which causes a 
reverse pressure gradient throughout the channel), both primary and secondary 
vortices shrink and move upstream, while further alternating vortices become apparent. 
The core flow acts as a wave between these vortices. The vortices do not move 
downstream, they remain in place and increase in intensity as flow deceleration 
continues. At zero flow, the waving core flow disappears and the residual vortices 
remain, although falling off in intensity. Upon flow reversal, these residual vortices are 
washed away and the cycle of the wave is reinitiated in the opposite direction. Later 
in this paper we will also address whether the vortices force the core flow to appear as 
a wave, or whether a genuine waving core flow drives the vortices. The main feature 
of a vortex wave which needs emphasizing is that it is a two-dimensional standing wave 
formed during the deceleration period wherein the core flow follows a sinuous path 
with a sequence of vortices forming alternately on each wall between the core flow and 
the walls of the channel. 

Computations of the case of a vortex wave formed during steady flow past a moving 
indentation were carried out by Ralph & Pedley (1988). Sobey (1985) also reported 
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both experimental observations and calculations of unsteady flow past a fixed 
indentation. Other calculations of unsteady flow past a fixed channel expansion can be 
found in Tutty & Pedley (1992). These last two papers used a finite-difference 
discretization of the equations of motion. In this paper we present results of 
computations using a finite-element method and primitive variables. Our discritization 
in time is semi-implicit and spatially we use quadratic triangular elements within a 
Galerkin-weighted-residuals formulation. The numerical technique is described in 
detail in DeBlois (1991) and DeBlois & Sobey (1992). This numerical method has 
proven robust and produced results which compare closely to the experimental results 
of Sobey (1985) as well as providing new results about the vortex wave. 

The formation of a sequence of vortices is not only an interesting fluid dynamic 
phenomenon, it can also be adapted to practical problems associated with mixing and 
filtration. If steady flow through a parallel channel is used to provide mass transfer 
through the channel walls then the formation of concentration boundary layers at the 
walls results in a degradation in the performance of the device with time. The use of 
convective mixing to overcome problems caused by these wall layers is well established 
(Bellhouse & Lewis 1988). It is clear that oscillatory flow can play a central role in 
efficiently disrupting wall layers and in providing a mechanism for interchange of 
material between the core of a channel flow and regions adjacent to the channel walls. 
Previous pulsatile flow devices have relied on using a single vortex in a furrow or 
dimple pressed into a membrane which makes up the channel wall. In the case of a 
vortex wave it is clear that a sequence of flow obstructions placed adjacent to the walls 
would provide a means whereby a vortex wave can form during each half-cycle of flow. 
If the flow deflectors are placed alternately on opposite walls then some of the energy 
remaining in the rotating vortices at the end of one half-cycle will augment that 
available from the main pulsation in the initial phase of the next half-cycle and the 
mixing performance should be greatest when the spacing between obstructions is tuned 
to the wavelength of the vortices. In order to demonstrate the application of a vortex 
wave mechanism to mixing processes we consider the mixing chamber which would 
occur between two obstructions placed adjacent to opposite walls and calculate the 
vortex wave which forms within this chamber. The resulting flows compare very closely 
with the flows that occur in the absence of a downstream obstruction. 

In both flow past a backward-facing step and flow in a mixing chamber the vortex 
wave which forms can be examined in detail from the computed numerical solution. A 
number of interesting features emerge. Calculations of the wavelength of the vortex 
wave lend considerable support to the theories of Pedley & Stephanoff (1985) and 
Sobey (1985) that the vortex wave is dominated by an inviscid deformation of vorticity 
in the oncoming flow. These calculations also show that under some circumstances the 
vortex wave has associated with it two different wavelengths. These are a longer one 
in accordance with inviscid rotational deformation theory in the immediate lee of the 
expansion, and a shorter one in the parallel part of the channel further downsL Im. 
Vortex motion is associated with both wavelengths. Re-examination of some or the 
results presented in Sobey (1985, figures 10 and 11) appear to confirm this hithLrto 
unnoticed feature of the vortex wave. We are also able to calculate vortex splitting, a 
feature discussed by Pedley & Stephanoff (1985). Our results show that vortex splitting 
appears to be a rapid transient within the period of growth and decay of the main 
vortex wave. 

Visualization of the flow results is accomplished using velocity vectors scaled to 
emulate pictures of particle traces taken by a camera with shutter speed A t h  of a 
second. Although in some of the figures these vectors are hard to resolve, the general 
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nature of the flow is clear. This visualization seemed to be better than streamlines, 
particularly when isolated portions of the flow were magnified. 

Foreshadowing the sections which follow, in $2 we present brief details of the 
problem formulation and our numerical technique. In order to test the numerical 
method we show in $ 3  calculations of steady flow past a backward-facing step, 
comparing our results with existing observations. In 94 we consider the original 
problem of Sobey (1985), oscillatory flow past a backward-facing step, and compare 
our calculations with his original observations. The results of calculating flow in a 
mixing chamber follow in 95. Our conclusions are presented in 96. 

2. Numerical model 
In order to model vortex wave flows we considered unsteady incompressible flow in 

two channel geometries which are illustrated in figure 1. One is a simple backward- 
facing step and the other is a mixing-chamber-type channel. The general situation with 
which we are concerned is motion of a fluid with kinematic viscosity v due to a piston 
of area A ,  oscillating with frequency 52 over a stroke k, combined with a mean flow 
Q. These two motions are fed into a channel of maximum height h and width w. In this 
case we can define a peak velocity 

3(A, nQk + Q )  
2wh 

u, = 

If we non-dimensionalize the velocity by U,, length by h and the pressure by pU,Z 
(where p is the fluid density), then there are two non-dimensional parameters left in the 
momentum equations, a Reynolds number Re = U, h / v  and a Strouhal number St = 
Qh/U,,. The incompressible flow is then given by a continuity equation 

v-u = 0 (2) and a momentum equation 

i3U 1 
St-+(u.V)u at = -vp+-v2u. Re  ( 3 )  

Since we are considering a steady mean component of the flow there is an additional 
non-dimensional parameter which enters via the boundary conditions at the inlet to the 
channel. We define the parameter 

A ,  n52k 
€ =  

A,nOk+Q (4) 

so that c = 1 represents purely oscillatory flow while c = 0 imposes no unsteadiness. 
For purposes of comparison, note that in this paper the Reynolds number is three times 
that of Sobey (1985) and the Strouhal number is times as great. No-slip boundary 
conditions are imposed on channel walls and the inlet flow above the step is 
approximated by quasi-steady flow so that 

where the channel width is 0 d y d 1. This approximation is valid at the range of 
frequencies we are considering. The outlet boundary conditions are the same as in 

u(O,y,t) = 2[1-16(y-32][(l-e)+ssin(2nt)]; 21 = 0, (5 )  

Hagstrom (1 990), 
1 au dV 

ax Re ax 
- - -0 ,  p - - - - 0 .  

In order to visualize the numerical results we plot velocity vectors at points in the 
flow domain. These are scaled to approximate photographic traces which might be 
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FIGURE 1. Two-dimensional channel geometries : (a) backward-facing step; (b) mixing chamber. 

FIGURE 2. Finite-element grids: Grid (a) (9 x 1) 512 quadratic elements, 11 13 velocity nodes and 301 
pressure nodes; Grid (b) (13 x 1) 672 quadratic elements, 1465 velocity nodes and 397 pressure nodes; 
Grid (c) (26.5 x 1) 1024 quadratic elements, 2201 velocity nodes and 589 pressure nodes. 

observed in an experiment using water with a camera shutter speed of &$h of a second 
in a channel of width 2 mm. The numerical solution involves an implicit &method time 
discretization of the transient, incompressible Navier-Stokes equations. Spatial 
discretization is accomplished by a Galerkin finite-element formulation. The method 
chosen applies quadratic basis functions for velocity and linear basis functions for 
pressure. Triangular elements were used to provide flexibility in the domain 
construction. The Navier-Stokes convection terms are linearized via Picard lin- 
earization and a preconditioned bi-conjugate gradient linear solver is used in the 
method of solution. Further detailed information regarding the numerical method can 
be found in DeBlois (1991). Various numerical results were obtained on the grids 
depicted in figure 2. These grids were chosen as a result of a series of mesh-refinement 
numerical experiments. We discuss this briefly in the conclusions of this paper. 

3. Steady flow over a backward-facing step 
In order to validate the numerical algorithm we have compared the calculated results 

with experiment for steady and unsteady flows and considered the effect of mesh 
refinement. In this section we describe the comparison of our numerical results against 
observations of steady flows past a backward-facing step. Comparisons against 
observations of unsteady flow are also given in $4 and additional validation by mesh 
refinement is described in $6. 

Steady two-dimensional flow over a backward-facing step is a well-established 
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FIGURE 3. Vortex length over a backward-facing step: 0, DeBlois (1990) (quadratic finite 
elements, 2527 DOFs); 0, Sobey (1985) (laboratory observations). 

problem for which there are many experimental observations. Flow separates in the lee 
of the channel expansion and the primary vortex increases with increasing Reynolds 
numbers. Secondary vortices form on the opposite wall, and their length is also 
Reynolds number dependent. Laboratory observations show that at high Reynolds 
numbers ( > 700) the flow quickly becomes three-dimensional and ultimately unstable. 
However, in the range below Re=700 observations show that a steady two- 
dimensional flow exists (Cherdron, Durst & Whitelaw 1978; Armaly et al. 1983; and 
Sobey 1985). Our numerical solutions agree with observations over this low Reynolds 
number range and are illustrated in figure 3, where we show primary vortex length, the 
position of the secondary vortex, and the observations of Sobey (1985). The close 
agreement, along with h-refinement error estimates, gives us confidence that the 
numerical algorithm is able to adequately resolve flow features of interest. 

4. Unsteady flow over a backward-facing step 
We now consider purely oscillatory flow ( B  = 1) past a backward-facing step and 

investigate the deceleration phase as t+g. Ralph (1986) found that in cylindrical 
geometries there were parameter ranges for which the decelerating flow depended on 
the previous half-cycle and so the initial half-cycle was not always typical of subsequent 
half-cycles. Our calculations have shown that in the parameter range we are 
considering the flow during the deceleration of the first half-cycle (which started from 
rest) is a good approximation to flow in the deceleration phases of subsequent half- 
cycles. The independence of the flow in our parameter range from its starting 
conditions has been observed by Sobey (1980) and Bittleston (1986), in each case for 
laminar two-dimensional flow. The formation of a vortex wave is illustrated in figure 
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FIGURE 4. Numerical flow visualization of the vortex wave in time, Re = 700, St = 0.01 
(a-f)  t = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5; e = 1, and channel length = 26.5. 

4 where we show a sequence in time of flow at a Reynolds number of 700 and a 
Strouhal number of 0.01. These results match the development in time shown by the 
experiments of Sobey (1985). It can be seen that at peak flow the dominant vortex is 
not the primary vortex which formed in the lee of the channel expansion but rather the 
secondary vortex which developed on the opposite wall. Were the flow development to 
be quasi-steady then at this Reynolds number the secondary vortex should be very 
weak. Obviously, the significance of unsteadiness is shown by the size of the secondary 
vortex. In this case there is already a substantial vortex wave formed at peak flow and 
this supports the results of Stephanoff et al. (1983) and Sobey (1985) that the vortex 
wave originates in an inviscid deformation of a rotational core flow. In Sobey (1985) 
it was shown that an asymptotic theory based on that idea led to a rapidly decaying 
wave-like structure within steady flow through an asymmetric channel and the presence 
of a wave at peak flow lends support to that theory. Further support will emerge 
shortly. 

Another feature which is apparent and has not been commented on before is the 
distinct change of wavelength evident in figures 4(e) and 4(f). Re-examination of the 
photographs in Sobey (1985) confirm that this feature also occurs in experiments and 
may indicate the existence of two different wave structures within the vortex wave. 

The initial wave, which has a relatively long wavelength ( 3 4  times the channel 
width), is probably the wave predicted by long-wavelength inviscid deformation of the 
core flow, as in Stephanoff et al. (1983) and Sobey (1985). The second wave, where the 
wavelength is comparable with the channel width, may in fact arise from a free 
boundary-layer interaction as suggested by Bogdanova & Ryzhov (1983). This would 
resolve the question of how these two different mechanisms for producing a wave 
structure interact. 

Since the wave calculated in figure 4 (f) reaches the end of the numerical domain, we 
recomputed the solution over a much longer domain to ensure that the numerical result 
was not corrupted by a reflected boundary condition. The result was that parallel flow 
developed immediately beyond the end of figure 4(f). 
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FIGURE 5. Numerical flow visualization of the vortex wave in time, Re = 700, St = 0.02: 
(a-f) t = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5; E = 1, and channel length = 26.5. 

FIGURE 6. Numerical flow visualization of the vortex wave for t = 0.5, St = 0.01 : 
( a d )  Re = 250, 400, 550, 700; B = 1, and channel length = 26.5. 

If the Strouhal number is increased to 0.02, then a time sequence (figure 5) again 
shows the same features as observed by Sobey (1985). The wavelength has decreased 
and so too has the longitudinal extent of the vortices. In this case it is also evident that 
a change of wavelength occurs (figure 5f), although here the second wave structure is 
damped very rapidly. 

In order to further characterize the vortex wave we have calculated flows at fixed 
Strouhal numbers and varying Reynolds numbers. We summarize these results by 
plotting only the flow at t = 0.5, the instant of mean flow reversal. In figure 6 the 
Strouhal number is fixed at 0.01 and it can be seen that as in Sobey (1985) there is a 
dramatic increase in longitudinal extent of the wave as the Reynolds number is 
increased. 

One other feature apparent from our calculations concerns vortex splitting or eddy 
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FIGURE 7. Numerical flow visualization of the vortex wave and associated eddy doubling for 
Re = 700, St = 0.01 : (a-c) t = 0.4, 0.45, 0.5; and E = 1. 

doubling. This formation of co-rotating vortices has been discussed by Pedley & 
Stephanoff (1985) and Ralph & Pedley (1988) where they find eddy doubling predicted 
by long-wavelength asymptotic analysis and for calculations of steady flow past a 
moving indentation. Our calculations of eddy doubling are illustrated in figure 7 where 
we show an expanded view of a section of figure 4(d-f). It is clear that eddy doubling 
is evident in figure 7(a)  but that the subsequent development in time (figure 7b ,  c) is 
the result of very rapid transients. We do not believe that it has been suggested that 
eddy doubling might be a highly transient process within the overall oscillating flow. 
Since existing asymptotic analyses are for long-wavelength low-frequency disturbances 
it is not surprising that this has not been suggested before. The calculations presented 
in figure 7 certainly warrant further numerical and asymptotic examination. In this 
context it is worth noting that the theory of Bogdanova & Ryzhov (1983) predicts 
disturbances from a free boundary-layer interaction which indeed are of very high 
frequency (see Sobey 1985, p. 423 and Smith & Burggraf 1985 who have considered 
short-scale disturbances to boundary layers). 

5. Unsteady flow in a mixing chamber 
We now continue our examination of the vortex wave in a mixing chamber. 

Although strong waves at high Reynolds numbers are evident in $4, many applications, 
such as those involving blood, are shear-limited (i.e. fluid constituent particles cannot 
withstand high shear forces), so many applications of the vortex wave may be suited 
to flows with low characteristic Reynolds numbers. Thus a mapping of the vortex wave 
over an Re-St domain at lower Reynolds numbers was pursued. These results also 
strengthen the conclusions drawn from the previous section. 
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FIGURE 8. Numerical flow visualization of the vortex wave in time, Re = 300, St = 0.02: (a;f) 
t = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5; B = 1, deflector spacing = 8, and channel length = 13. 

The 13 x 1 numerical grid shown in figure 2(b) was implemented over a 200 < Re < 
400 by 0.01 < St < 0.06 domain. Mesh refinement in the potential problem areas of 
pressure singularities (deflector corners) and concentration boundary layers (wall 
effects) are apparent. 36 numerical experiments were accomplished to establish the 
character of the vortex wave over this R e s t  domain, for the particular circumstance 
of E = 1, deflector spacing = 8, a sinusoidal pulse, and rectangular obstructions. Figure 
8 is another example of the development of the vortex wave in the deceleration phase 
of pulsatile flow for a Reynolds number of 300 and Strouhal number of 0.02. As in 44, 
these results also match the development in time demonstrated by the experiments of 
Sobey (1985). For these parameters and most of those covering the chosen R e s t  
domain, the wave does not fully develop until the latter phases of deceleration (around 
t = 0.4). This is unlike the higher Reynolds’ number results of 94, and is primarily an 
effect of low Reynolds number. From peak flow ( t  = 0.25) to the latter stage of 
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(4 

id) 

FIGURE 9. Numerical flow visualization of the vortex wave, t = 0.5, Re = 300: (a-f) St = 0.01, 
0.02, 0.03, 0.04, 0.05, 0.06; 6 = 1, deflector spacing = 8, and channel length = 13. 

deceleration, the secondary separation on the top wall is observed to dominate the 
character of the flow, confirming the significance of unsteadiness already mentioned. 

As with the results of the previous section, the clearest picture of the vortex wave is 
observed at zero flow (e.g. figure Sf), which is why we chose this ‘snap-shot’ to 
visualize different waves. Using this characterization, in figure 9 the Reynolds number 
is fixed at 300 and the Strouhal number is allowed to vary, while in figure 10 the 
Strouhal number is fixed at 0.03 and the Reynolds number is allowed to vary. The 
overriding conclusion drawn from figures 9 and 10 (as well as figure 6) is that while the 
Reynolds number (pulse stroke length and frequency) determines the number of 
vortices and their strength, the Strouhal number (stroke length only) dictates the 
wavelength (A) .  Asymptotic analyses summarized in Sobey (1985) predict a very weak 
A-dependence upon Reynolds number (I cc Re-f) but a stronger A-dependence upon 
Strouhal number ( A  cc St-;). The weak dependence of h upon Reynolds number is 
reflected in figure 10 as well as in figure 6, where a fixed Strouhal number and varying 
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FIGURE 10. Numerical flow visualization of the vortex wave, t = 0.5, St = 0.03: (a-e) Re = 200, 
250, 300, 350, 400; E = 1, deflector spacing = 8, and channel length = 13. 

9 t  

FIGURE 11. Wavelength us. Strouhal number for the vortex wave with e = 1 : 0, numerical 
result; - x -, asymptotic expectation. 

Reynolds number causes very little change in wavelength. A strong A-dependence on 
Strouhal number is indicated by a decreasing h with increasing Strouhal number 
obvious in figure 9. In figure 11 we combine the numerical results of figures 4, 5 and 
9 and plot them against the asymptotic expectation of h cc St-; to confirm the latter. 
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FIGURE 12. (a)  Average horizontal wall shear ( J , ) ;  (b) average increase in diffusivity (D,  scaled to 
1 x lo-*); (c) average nodal vorticity (0); (d )  average, dispersion-weighted nodal vorticity (w*) due to 
the vortex wave; B = 1, deflector spacing = 8, and channel length = 13. 

Figure 11 also includes a result at Re = 800, St = 0.005 not visualized in any of the 
previous figures. 

With regard to mixing applications, the vortex wave has two fundamental effects on 
fluid flow. The first of these is an alteration of the flow local to the channel walls, which 
in application could reduce material buildup there. To quantify these local effects we 
define 

au 
- dx (average horizontal wall shear), (7) 

and D ,  = 1 (8 [&y]') dx (average additional tendency to diffuse). (8) 
wall 

Averages are accomplished spatially on the walls between deflectors and temporally 
through one pulse cycle. 
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FIGURE 13. Nodal vorticity o through one pulse cycle for Re = 250, St = 0.03, various E values, 
deflector spacing = 8, and channel length = 13. A, E = 0.5,W = 91.4; 0,  E = 0.75, = 90.7; 0, E = 
I .O, 0 = 119.2. 

The second effect of the wave on fluid flow is a global mixing effect as opposed to 
the local wall effects. In order to quantify the total mixing effect of a vortex wave, we 
define throughout the domain 

w = lJ(”-”) dy dx (average vorticity), ax ay (9) 

5 

and 

where NT represents the total number of nodes and N A  is the number of nodes with w 
values greater than the mean. Here the averages are accomplished spatially within the 
domain and temporally through one pulse cycle. 

Using these measures to compare 36 different vortex waves over the chosen Re-St 
domain, we plot the results in figure 12. Several observations can readily be made. 
Higher Strouhal numbers and fixed Reynolds numbers are produced by shortening the 
stroke length and increasing the pulse frequency (equation (1)). This produces a more 
energetic wave of shorter wavelength, consistent with previous findings. Vorticity 
seems to be independent of Strouhal number (figure 12c), implying that the total 
channel vorticities of figures 9 (a-f) are equivalent. Recognizing that total mixing 
would be better served by less violent, more dispersed vortices, we produced a 
dispersion-weighted vorticity to account for this. Figure 12 ( d )  demonstrates this, 
indicating, for instance, that the wave in figure 9(c) is a better means of mixing the flow 
than the wave in figure 9 0 .  Note that Sobey (1985) also predicted a more extended 
vortex wave with increasing Reynolds number and decreasing Strouhal number. 

As a further means of examining the vortex wave, we examined the durability of the 
wave when corrupted by additional factors such as a superimposed bulk flow, a change 
of pulsation type, various deflector spacings and shapes, and the imposition of wall 
suction. Figure 13 uses the vorticity quantifier plotted in time through one pulse cycle 
to demonstrate the effect of a superimposed bulk flow on a pulsating flow. E = f shows 

w* = w (2 4) (average dispersion weighted vorticity), (10) 
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FIGUR~! 14. Nodal vorticity w through one pulse cycle for Re = 250, St = 0.03, various pulsed flows: 
0, sins, pulsation, = 149.8; 0 ,  sin', ij = 119.2; A, sin', w = 83.6. E = 1, deflector spacing = 8, and 
channel length = 13. 

symmetry in the half-cycle, confirming the experimental observations at these lower 
Reynolds numbers that for full pulsation a wave develops in the deceleration of 
forward flow, is washed away in the acceleration of reverse flow, and a new wave 
develops in the deceleration of the reverse flow. If part of the forward flow is considered 
to be a bulk flow, the wave in the forward direction is not impeded significantly, but 
the bulk flow will impede the reverse flow and subsequently the vortex wave in that 
direction. An industrial requirement of high mean flow will prevent the formation of 
a vortex wave in the reverse direction. The results do suggest a compromise. If flow is 
initially decelerated very closely (maintaining high mean flow), and then decelerated 
very quickly to get the pulsation close to e = 1, the result may be a complementing 
rather than a competing effect of both higher sustained flow and a stronger pulsation. 
Rotating a piston arm through an elliptical path as opposed to a circular path 
(sinusoidal pulsation) could yield the desired effect. Figure 14 compares a quicker 
deceleration (sin;) to both the sinusoidal pulse used so far and to a slower decelerating 
pulse (sin'). The faster decelerating pulse yielded the following improvements over the 
sinusoidal pulse: Jm+24%, D,+12%, w + 2 6 % ,  and w*+37%.  
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FIGURE 15. Numerical flow visualization of the vortex wave for different shaped deflectors, 
Re = 300, St = 0.03, B = 1, deflector spacing = 8, and channel length = 13. 
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FIGURE 16. Vortex length reduction due to transverse wall suction. PVS(R), primary vortex 
separation (reattachment) ; SVS(R), secondary vortex separation (reattachment). 

In addition to variations of the pulse, we also considered variations of deflector 
spacing and shape. All four quantifying measures showed that upstream vortices were 
significantly stronger than downstream vortices and the application of the vortex wave 
in channels which allowed two or three vortices maximized mixing. The importance of 
an abrupt expansion ratio is indicated by the numerical experiment portrayed in figure 
15. A slight modification to the upstream obstruction initiated the wave further 
upstream and caused the following reduction in the four measures : J, - 16 %, 
D,-25%, w - 9 % ,  and o * - 2 2 0 .  

Finally, several applications of the vortex wave occur in cross-flow filtration 
processes, so we consider here the effect of wall suction on vortex length. For steady 
flow over a backward-facing step, we constructed a membrane extending from the base 
of the step three units downstream (6 times the height of the step). We then varied the 
percentage of inlet flux sucked through this membrane and continuously measured the 
length of the vortex. The results are depicted in figure 16. For some applications, high 
suction may inhibit the wave, but to keep these results in perspective, a typical filtration 
device filters about 10 O/O of the bulk flow over an entire 80 x 2 membrane surface. This 
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FIGURE 17. Quadratic, triangular-element numerical grids: (a) coarse grid - 921 velocity nodes, 253 
pressure nodes, and 416 elements; (b) fine grid - 3503 velocity nodes, 921 pressure nodes, and 1664 
elements. 

FIGURE 18. Pulsatile flow for Re = 300, St = 0.03, arrow length = & s x local velocity: (a) coarse 
grid solution; (b) fine grid solution. 

equates to negligible suction velocities due to only about 0.2 YO of the inlet flux being 
sucked through 3 unit portions of a membrane. Figure 16 indicates at that level, wall 
suction velocities are simply too small to affect vortex length, and hence a vortex wave. 

6. Conclusions 
Results of $3  confirmed the numerical steady flows and thus far laboratory 

observations have been used to justify interpreting these results as accurate. In addition 
to this we pursued an a posteriori h-refinement error estimate to validate the transient 
results. The two regular quadratic, finite-element grids shown in figure 17 were used. 
The coarse mesh is typical of the grids used throughout this paper while the fine grid 
is a 4 to 1 refinement. Purely pulsatile flow (e = 1) with Re = 300 and St = 0.03 was 
calculated on both meshes. A zero-flow visualization at t = 0.5 is plotted in figure 18. 
For comparison, only the solution vectors on the fine mesh which correspond to those 
on the coarse mesh are plotted. Visually, there is no significant difference between the 
two solutions. Quantitatively, the average nodal difference through an entire pulse 
cycle was less than 2.5%. The Taylor-Hood finite element used is known to have a 
convergence rate of O(h3). Given a 2.5 % average nodal difference between the coarse 
O(A3) and fine O(A3) grids, it seems that both solutions are in the tail of convergence 
and a consistent numerical approximation is obtained. Given this numerical evidence 
and the experimental observations of Sobey (1985), the results of this paper can be 
interpreted as accurate. 

The significance of unsteadiness in the generation of the vortex wave has been 
emphasized and our numerical results demonstrate a change in downstream 
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wavelength. We have suggested that the vortex wave is an interaction of an inviscid 
deformation of a rotational core flow causing the upstream long wavelength (predicted 
by Stephanoff et al. 1983) while a free boundary-layer interaction is responsible for the 
high-frequency downstream wave (predicted by Bogdanova & Ryzhov 1983). Eddy 
doubling (predicted by Ralph & Pedley 1988) seems to be a highly transient product 
of this interaction. We have also confirmed the h cc St-; relation summarized in an 
asymptotic analysis presented in Sobey (1985) and we have numerically verified 
Sobey’s observations that stronger and more extended waves occur at higher Reynolds 
number and lower Strouhal numbers. Applications of the vortex wave to high mean 
flow situations requires quick decelerations, short deflector spacings and abrupt 
expansion ratios. Finally, for the specific applications to cross-flow filtration, the wave 
is not affected by realistic filtration velocities. 
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